If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3y^2=16
We move all terms to the left:
1/3y^2-(16)=0
Domain of the equation: 3y^2!=0We multiply all the terms by the denominator
y^2!=0/3
y^2!=√0
y!=0
y∈R
-16*3y^2+1=0
Wy multiply elements
-48y^2+1=0
a = -48; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-48)·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-48}=\frac{0-8\sqrt{3}}{-96} =-\frac{8\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-48}=\frac{0+8\sqrt{3}}{-96} =\frac{8\sqrt{3}}{-96} =\frac{\sqrt{3}}{-12} $
| 15=3g-24 | | 51+67+67+x=90 | | 14+z=42 | | 5x-11+3x-2+121=180 | | 51+67+67+x=180 | | (2x+2)+(6x+8)=90 | | 5x-11+3x-2=180 | | (x-28)+(x+6)+(x+22)=180 | | 3x+1=-x–4 | | 12x^2-7x+8=0 | | 3.85x^2-11.44x+3.03=0 | | (3x+10)+(110-x)+2x=180 | | 12x^-7x+8=0 | | x+.03x=418324.50 | | 25=-8+(9x+27) | | x+.03x=61896.50 | | 64+n=33n | | 7n^2+64n+64=0 | | 9x-4=5x+116 | | 4x+7x-8x-5=4 | | x=11.25-(x/2) | | 14+5=-5x-(-18x+90)+5 | | 1/4(12x-8)=5+x | | r-10/6=-1 | | 2/5c=15 | | 45=9,5x-12 | | y/7/3=4/3 | | (3x+4)*(3x+4)*(3x+4)=2197 | | 7^2=12-x(12) | | 108+7m=220 | | 23n-84=192 | | 30=3x+2 |